VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (C.S.E.) III Year I-Semester (Main) Examinations, Nov./Dec.-2016

Automata, Languages and Computation

Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20 \mathrm{Marks}$)

1. Design a finite automaton that accepts all the strings over the alphabet $\{a, b\}$.
2. What is the length of the shortest string NOT in the language (over $\Sigma=\{a, b\}$) represented by the regular expression $a^{*} b^{*}(a b)^{*} a^{*}$
3. What are the closure properties of Regular Language?
4. Can we have more than one Minimal Finite Automata for a given language? Justify with an example.
5. State the pumping lemma for Context Free Languages.
6. Convert the following CFG to CNF.
$S->a A B$
$A \rightarrow a A \mid a$
$B->b B \mid b$
7. List the different types of Turing Machines.
8. Define instantaneous description of a Turing Machine.
9. What is restricted satisfiability problem?
10. Define recursively enumerable language.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) Design a DFA to accept the language $L=\{w \mid w$ have even number of 0 's and even number of 1's \}.
b) Design an NFA with three states to accept the language of the regular expression $0^{*} 10^{*} 0$.
12. a) Consider the following DFA. Minimize the states of DFA using Table filling method.

b) Show that $\left\{0^{i} 1^{j} \mid \operatorname{gcd}(i, j)=1\right\}$ is not regular.
13. a) Explain CYK algorithm.
b) Design a PDA to accept the language $L=\left\{a^{n} b^{2 n} \mid n>=1\right\}$.
14. a) Design a Turing machine to accept the language: $\mathrm{L} 2=\left\{w \mathrm{C}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid \# \mathrm{a}(w)=\# \mathrm{~b}(w)=\# \mathrm{c}(w)\right\}$ [7]
(Note: '\#' means number).
b) Why Turing Machine is considered to be powerful than PDA? Justify.
15. a) State PCP and find whether given instance of PCP has solution or not.

	List A	List B
	W_{i}	x_{i}
1	011	110
2	01	010
3	110	01

b) Explain about P and NP classes.
16. a) Construct an Epsilon NFA for the language represented by the Regular expression 0+01*. [5]
b) What is Chomsky's hierarchy of languages? Explain with a neat diagram.
17. Write short notes on any two of the following:
a) Greibach Normal Form.
b) Universal Turing Machine.
c) Closure properties of CFLs.

